Using Neural Nets to Estimate Evolutionary Parameters
نویسندگان
چکیده
The rapid growth in the amount of molecular genetic data being collected will, in many cases, require the development of new analytic methods for the analysis of that data. In this paper we explore the feasibility of using machine learning algorithms, in particular neural networks, to estimate two evolutionary parameters of great interest: mutation and recombination rates. We show that this is possible, and that the performance of such methods depends crucially upon the existence of good summary statistics appropriate for the given parameter, as well as the format in which the data itself is represented.
منابع مشابه
Determining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
متن کاملUsing neural network to estimate weibull parameters
As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...
متن کاملEvolutionary Chromatographic Law Identification by Recurrent Neural Nets
Analytic chromatography is a physical process whose aim is the separation of the components of a chemical mixture, based on their different aanities for some porous medium through which they are percolated. This paper presents an application of evolutionary recurrent neural nets optimization to the identiication of the internal law of chromatography. New mutation operators involving the paramet...
متن کاملIdentifying Nonlinear Dynamic Systems Using Neural Nets and Evolutionary Programming
Nonlinear system behavior is not always well characterized by linearized system models, especially if the system is chaotic. This research studies the use of a neural network algorithm structure to model two nonlinear systems, a quadratic system and a chaotic system. An evolutionary programming approach is employed to train the neural nets so that the training process might better avoid selecti...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کامل